Mini-Curso Prático Cálculos Quânticos de Estrutura Eletrônica Semi-Empíricos

Bloco 2: 20-21/08/2014 Prof. Carlos Mauricio R. Sant´Anna PPGQ, PPGMMC – UFRuralRJ LASSBio – UFRJ

Introdução: definição de coordenadas

Definição de coordenadas: Proteínas

ATOM	27	0	LEU	A	4	77.003	3.843	44.087	1.00 13.45
ATOM	28	CB	LEU	A	4	77.898	6.329	42.396	1.00 15.67
ATOM	29	CG	LEU	A	4	77.601	7.500	43.285	1.00 19.63
ATOM	30	CD1	LEU	A	4	77.195	8.668	42.381	1.00 20.17
ATOM	31	CD2	LEU	A	4	76.454	7.125	44.178	1.00 21.10
ATOM	32	Ν	THR	А	5	78.685	4.704	45.268	1.00 8.95
ATOM	33	CA	THR	А	5	78.135	4.216	46.524	1.00 8.70
ATOM	34	С	THR	Α	5	77.707	5.427	47.354	1.00 8.78
ATOM	35	0	THR	А	5	78.464	6.407	47.521	1.00 10.03
ATOM	36	CB	THR	А	5	79.198	3.356	47.289	1.00 8.95
ATOM	37	OG1	THR	А	5	79.489	2.188	46.508	1.00 9.86
ATOM	38	CG2	THR	А	5	78.680	2.953	48.670	1.00 9.25
ATOM	39	Ν	LEU	А	6	76.462	5.384	47.810	1.00 7.96
ATOM	40	CA	LEU	А	6	75.912	6.448	48.641	1.00 9.30
ATOM	41	С	LEU	Α	6	75.962	6.043	50.097	1.00 9.92
ATOM	42	0	LEU	А	6	75.435	5.007	50.465	1.00 10.76
ATOM	43	CB	LEU	А	6	74.431	6.701	48.294	1.00 10.74
ATOM	44	CG	LEU	А	6	74.239	7.268	46.889	1.00 11.40
ATOM	45	CD1	LEU	А	6	72.734	7.293	46.600	1.00 12.49
ATOM	46	CD2	LEU	А	6	74.859	8.673	46.749	1.00 14.87
ATOM	47	Ν	GLN	A	7	76.593	6.887	50.905	1.00 11.43
ATOM	48	CA	GLN	A	7	76.629	6.676	52.343	1.00 11.94
ATOM	49	С	GLN	A	7	75.288	7.053	52.959	1.00 11.70
ATOM	50	0	GLN	A	7	74.540	7.856	52.387	1.00 11.53
ATOM	51	CB 2	AGLN	A	7	77.614	7.677	52.953	0.50 13.93
ATOM	52	CB I	BGLN	A	7	77.780	7.429	53.017	0.50 14.54
ATOM	53	CG I	AGLN	A	7	78.995	7.529	52.463	0.50 15.02
ATOM	54	CG I	BGLN	A	7	79.127	6.713	52.888	0.50 17.25
ATOM	55	CD 2	AGLN	A	7	79.419	6.152	52.744	0.50 15.86
ATOM	56	CD I	BGLN	A	7	80.164	7.237	53.882	0.50 19.70
ATOM	57	OE12	AGLN	A	7	79.812	5.420	51.856	0.50 18.29
ATOM	58	OE11	BGLN	A	7	80.022	7.080	55.101	0.50 22.14
ATOM	59	NE22	AGLN	A	7	79.312	5.763	54.007	0.50 18.08

http://www.rcsb.org/pdb/home/home.do

Convertendo Formatos: o Programa Babel (Unix, DOS, Windows)

babel [-H help-options]

babel [OPTIONS] [-i input-type] infile [-o output-type] outfile SOME OPTIONS:

- -e Continue after errors
- -d Delete Hydrogens
- -h Add Hydrogens
- -j join Join all input molecules into a single output molecule entry
- -k Translate computational chemistry modeling keywords (e.g., GAMESS and Gaussian)

Ex.:

- babel -imopint butano.mop -omol2 butano.mol
- babel -h -ipdb butano.pdb -omopint butano.mop

Métodos Semi-empíricos: desempenho

Table 10 Average unsigned errors in ΔH_f for various sets of elements (kcal mol⁻¹)

Set of elements	No.	PM6	RM1	PM5	PM3	AM1
H, C, N, O	1157	4.64	4.89	5.60	5.65	9.41
H, C, N, O, F, P, S, Cl, Br, I	1774	5.05	6.57	6.75	8.05	12.57
Whole of main group	3188	6.16		15.27	17.76	22.34
70 elements	4492	8.01				

J. J. P Stewart, *J. Mol. Model.* 2007, 13, 1173-1213. Parâmetros semi-empíricos para 70 elementos da tabela periódica.

Hydrogen-bonded system	Ref	PM6	PM5	PM3	AM1
Ammonia - ammonia	-2.94	-2.34	-0.77	-0.67	-1.41
Water - methanol	-4.90	-5.12	-2.59	-0.20	-4.52
Water - acetone	-5.51	-5.25	-2.43	-2.22	-4.09
Water, dimer, linear (O-H-O = 180°)	-5.00	-3.69	-1.57	-3.49	-3.16
Water, dimer	-5.00	-4.88	-2.43	-1.95	-5.01
Benzene dimer, T-shaped	-2.34	-0.83	-0.22	-0.56	-0.07
Water - acetate anion	-19.22	-18.72	-12.28	-15.77	-15.91
Water - formaldehyde	-5.17	-4.22	-2.17	-2.73	-3.40
Water - ammonia	-6.36	-4.32	-2.75	-1.53	-2.90
Water - formamide	-8.88	-7.60	-4.14	-4.33	-7.54
Formic acid, dimer	-13.90	-10.03	-4.75	-8.65	-6.44
Water - methylammonium cation	-18.76	-14.90	-8.94	-10.48	-14.36
Formamide - formamide	-13.55	-10.83	-4.46	-6.08	-8.14
Acetic acid, dimer	-14.89	-10.33	-4.50	-8.70	-6.44

Table 18 Comparison of B3LYP and PM6 hydrogen bond energies (kcal mol⁻¹)

J. J. P Stewart, *J. Mol. Model.* 2007, 13, 1173-1213.

Parte Prática: O que é preciso

- Mopac2012
- Swiss-PDB Viewer
- Pymol
- Rasmol
- Acesso à Internet
- Um computador razoavelmente rápido...

Exercício 1: Trabalhando com proteínas no Mopac

- 1. Acessar PDB
- 2. Baixar uma estrutura da crambina (2FD7)
- 3. Fazer cópia do arquivo
- 4. Executar cópia no Mopac.
- 5. Abrir arquivos resultantes com editor de textos. Analisar.
- 6. Abrir arquivo .pdb com Rasmol ou Pymol. Analisar.
- 7. Abrir arquivo .arc com editor de textos e adicionar as palavras-chave

OSCF e RESEQ

Salvar o arquivo com novo nome e a extensão .mop.

8. Executar o arquivo no Mopac.

9. Abrir o arquivo .pdb com editor de textos e comparar com o anterior.

Obs.: em algumas versões do Mopac2012 podem ocorrer problemas na execução de algumas operações, sendo necessário adicionar a palavrachave GEO-OK. Essa palavra-chave só deve ser usada em caso de problemas e o seu uso será indicado pelo próprio programa no final do arquivo .out gerado após o cálculo.

Exercício 2: Calculando proteínas com o Mopac

- 1. Acessar PDB
- 2. Baixar uma estrutura da somastotatina (2MI1). Editar arquivo para ficar com apenas uma estrutura. Salve com outro nome.
- 3. Repetir etapas 3 a 6 do exercício 1
- 4. Quais erros são observados? Corrigir o arquivo .pdb com o programa Pymol. Avalie e determine a carga.
- 5. Editar o arquivo .pdb e adicionar as palavras-chave na primeira linha CHARGES PDBOUT MMOK
- Adicionar duas linhas em branco se necessário. A matriz deve começar na quarta linha. Salve com novo nome.
- 6. Executar no Mopac.
- 7. Abrir o arquivo .out e verifique a carga atribuída. Veja se ela concorda com a carga que você havia previsto.
- 8. Editar novamente o arquivo .pdb. Apague a palavra-chave CHARGES e adicione as palavras-chave

NOOPT OPT-H MOZYME PL CHARGE=n

onde *n* é a carga do sistema.

- 9. Executar no Mopac. Analise os arquivos de saída com um editor e a estrutura final com o programa Rasmol (ou Pymol).
- 10. *Etapa adicional:* repetir as etapas 5 a 9 com o arquivo .pdb da crambina, gerado ao final do exercício 1.

Exercício 3: Calculando proteínas com o Mopac – Efeito do Meio

1. Abra o arquivo .arc do exercício 2 (somastotatina) com um editor de textos. Transforme em um arquivo .mop. Apague as a palavraschave NOOPT OPT-H e adicione as palavras-chave

OPT GNORM=20

Salve com novo nome e a extensão .mop

- 2. Executar no Mopac. Analise o resultado com o programa Rasmol (ou Pymol). Compare com a estrutura inicial.
- 3. Repetir o passo 1, mas adicione também a palavra chave

EPS=78.4

- 4. Executar no Mopac. Analise o resultado com o programa Rasmol (ou Pymol) e compare com o resultado anterior.
- 5. Repetir o passo 1, mas adicione também a palavra chave

EPS=4.0

6. Executar no Mopac. Analise o resultado com o programa Rasmol (ou Pymol) e compare com os resultados anteriores.

Exercício 4: Calculando metaloproteínas com o Mopac

- 1. Acessar PDB
- 2. Baixar uma estrutura do peptídeo da proteína MERP (1DVW). Editar arquivo para ficar com apenas uma estrutura. Analise a estrutura (Pymol ou Rasmol) e determine a carga.
- 3. Fazer cópia do arquivo e executar cópia no Mopac.
- 4. Edite o arquivo .pdb e adicione as palavras-chave na primeira linha

CHARGES PDBOUT MMOK

Adicione duas linhas em branco se necessário. A matriz deve começar na quarta linha. Salve com novo nome.

- 5. Executar no Mopac.
- 6. Abra o arquivo .out e verifique a carga atribuída, átomo a átomo. Veja se ela concorda com a carga que você havia previsto.
- 7. Repita as etapas 4 e 5, adicionando também a palavra-chave METAL=(xx), onde xx é o símbolo químico do metal presente.
- 8. Abra o arquivo .out e verifique a carga atribuída, átomo a átomo. Compare com o resultado anterior.
- 9. Edite novamente o arquivo .pdb. Apague a palavra-chave CHARGES e adicione as palavras-chave

NOOPT OPT-H MOZYME PL CHARGE=n

onde *n* é a carga do sistema.

10. Executar no Mopac. Analise.

Exercício 5: Calculando metaloproteínas com o Mopac (continuação do exercício 4)

1. Abra o arquivo .arc gerado na etapa 10 do exercício anterior com um editor de textos. Transforme em um arquivo .mop. Apague a palavra-chave OPT-H e adicione as palavras-chave

OPT-Hg OPT-S EPS=78.4

Salve com novo nome e a extensão .mop

- 2. Executar no Mopac. Analise o resultado com o programa Rasmol (ou Pymol). Compare com a estrutura inicial.
- 3. Apague as palavras-chave NOOPT OPT-Hg OPT-S e adicione as palavras-chave

OPT GNORM=20

Salve com novo nome e a extensão .mop

- 4. Executar no Mopac. Analise o resultado com o programa Rasmol (ou Pymol). Compare com a estrutura inicial.
- Etapa adicional: edite o arquivo da etapa 1, substituindo o íon Hg(II) por um íon Zn(II) e refaça o exercício, substituindo Hg por Zn nas palavras-chave. Compare os resultados com os 2 metais.

Exercício 6: Calculando entalpia de interação em complexo inibidor/enzima com o Mopac

1. Acessar PDB

- 2. Baixar uma estrutura da acetilcolinaesterase (1ACJ).
- 3. Abra estrutura com o programa Swiss-PDB Viewer. Selecione todos os resíduos até 10 Angstroms de distância do resíduo His440 e salve a seleção com outro nome (formato pdb).
- 4. Adicione átomos de H com o Mopac e faça a transferência dos átomos de H (RESEQ), conforme já descrito para as outras estruturas.
- 5. Determine a carga por inspeção visual (programas Rasmol ou Pymol).
- 6. Edite o arquivo .pdb e adicione as palavras-chave na primeira linha

CHARGES PDBOUT MMOK

Adicione duas linhas em branco se necessário. A matriz deve começar na quarta linha. Salve com novo nome.

- 7. Executar no Mopac.
- 8. Abra o arquivo .out e verifique a carga atribuída, átomo a átomo. Compare com a sua proposta.
- 9. Edite novamente o arquivo .pdb. Apague a palavra-chave CHARGES e adicione as palavras-chave

NOOPT OPT-H MOZYME PL CHARGE=n

onde *n* é a carga do sistema. Se n=0, a palavra-chave pode ser omitida.

10. Executar no Mopac. Analise.

- 11. Abra o arquivo .pdb com um editor de textos. Extraia do final do arquivo as linhas que descrevem o ligante (HETATM). Salve o arquivo sem o ligante com outro nome. Cole as linhas que extraiu em um novo arquivo, a partir da quarta linha. Na 1ª linha adicione as mesmas palavras-chave. Salve com outro nome.
- 12. Execute os 2 arquivos. Extraia os valores de entalpia de formação de cada arquivo .arc gerado (complexo, sítio vazio e ligante) Calcule a entalpia de interação inibidor-enzima.