Modelos Coarse-Grained Modelagem em Escala Multipla VII EMMSB, LNCC, 19.08.2014

Hubert Stassen

gullit@iq.ufrgs.br

Grupo de Química Teórica Instituto de Química - UFRGS

The Nobel Prize in Chemistry 2013

Photo: A. Mahmoud Martin Karplus Prize share: 1/3

Photo: A. Mahmoud Michael Levitt Prize share: 1/3

Photo: A. Mahmoud Arieh Warshel Prize share: 1/3

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel *"for the development of multiscale models for complex chemical systems"*.

Photos: Copyright © The Nobel Foundation

Retinal Molecule

Separating σ skeleton (MM) and π system (QM)

A. Warshel, M. Karplus, JACS 94 (1972), 5612

Lysozyme Reaction

QM/MM + continuum treatment

A. Warshel, M. Levitt, J.Mol.Biol. 103 (1976), 227

Protein Folding

Simulated annealing of a "CG" Bovine Pancreas Trypsin Inhibitor

M. Levitt, A. Warshel, Nature 253 (1975), 694

Outline

- 1. Time and length scales
- 2. Molecular Dynamics
- 3. Coarse-Graining
- 4. Protein membrane interaction
- 5. Jumping between scales

Time and Length Scales

Biological scales

http://www.psi.ch/swissfel/time-and-length-scales-of-biochemical-reactions

Protein dynamics

S. Kmiecik et al., em A. Kolinski (ed.) Multiscale Approaches to Protein Modeling (Springer,

2011), 281

http://www.hiu.kit.edu/104.php

QM - DFT - MD

F. Dommert et al., J. Mol. Liquids 152 (2010), 2

LNCC - 19.08.2014 - p. 10/75

Molecular Dynamics

Numerical solution of equations of motion - classical case

$$\mathbf{r}_{i}(\Delta t) = \frac{\mathbf{F}_{i}}{2m_{i}}\Delta t^{2} + \mathbf{v}_{i}(0)\Delta t + \mathbf{r}_{i}(0)$$
$$\mathbf{v}_{i}(\Delta t) = \frac{\mathbf{F}_{i}}{m_{i}}\Delta t + \mathbf{v}_{i}(0)$$
$$\mathbf{F}_{i} = -\frac{d}{d\mathbf{r}_{i}}V(\mathbf{r})$$

with i = 1, 2, ..., N

based on a force field (here: AMBER)

$$V(\mathbf{r}) = \sum_{i=1}^{bonds} k_{b,i} (\mathbf{r}_i - \mathbf{r}_{o,i})^2 + \sum_{i=1}^{angles} k_{\theta,i} (\theta_i - \theta_{o,i})^2$$

$$+ \sum_{i=1}^{dihed.} \frac{V_{o,i}}{2} [1 + \cos(n_i \phi_i - \gamma_i)]$$

$$+ \alpha \sum_{i,j>i}^{N} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]$$

$$+ \beta \sum_{i,j>i}^{N} \frac{q_i q_j}{4\pi\epsilon_o r_{ij}}$$

$$\varepsilon_{ij} = = \sqrt{\varepsilon_i \varepsilon_j} \quad \sigma_{ij} = \frac{\sigma_i + \sigma_j}{2}$$

LNCC - 19.08.2014 - p. 12/75

Time step Δt

- as large as possible
- resolve the dynamical process

• flexible atomistic simulations: $\Delta t \simeq 1 \cdot 10^{-15}$ s (fs)

• we need constant forces during Δt

Increasing the time step Δt

remove the fastest processes (constraints)

 $\implies \Delta t \simeq 2 \, \text{fs}$

- smooth potentials
- Maxwell-Boltzmann

$$\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$$

 \implies increase the mass

Case study: methane

• OPLS-AA: C (opls138), H (opls140) \implies 25 pair interactions and electrostatics

OPLS-UA: CH₄ (opls066) ⇒ 1 pair interaction without electrostatics

- Vibrational dephasing: all-atom, flexible
- Rotational dynamics, neutron scattering, ...: all-atom, constraints
- Liquid density, diffusion constant, vaporization enthalpy, ...: united-atom

 \implies we are already scaling on time and length scales

Case study: POPE all-atom (1-Palmitoyl-2-oleoylphosphatidylethanolamine)

125 atoms \implies 15625 pair interactions constraints for membrane simulations: $\Delta t \simeq 2$ fs

Case study: POPE united-atom, but polar hydrogens

52 atoms \implies 2704 pair interactions constraints for membrane simulations: $\Delta t \simeq 2$ fs

Coarse-Graining

- Goal: realistic simulation of large complex systems for a long time by
 - reduction of interaction sites (MD CPU time $\propto N^2$)
 - elimination of very fast dynamical processes (small masses, large force constants)
 - Maintaining the essential physics of the system

Polymer physics Rouse-Zimm spring-bead

de Gennes blob

Protein folding

M. Levitt, A. Warshel, Nature 253 (1975), 694

Go models

2-D: H. Taketomi et al., Int. J. Pept. Res. 7 (1975), 445.

3-D Example: V.I. Abkevich et al., Folding and Design 1 (1996), 221

Figure 1. A randomly chosen maximally compact 48-mer on a cubic lattice.

LNCC - 19.08.2014 - p. 22/75

Creating a CG model: Mapping

- Physical/chemical intuition: polar/non-polar, hydrogen bond donor/acceptor, charged/neutral, attractive/repulsive, ...
- Bead at the center of mass of the atoms to be joined (proteins: center at C_α)

MS-CG: G.S. Ayton et al, MRS Bulletin 32 (2007), 929.

MARTINI, mapping scheme 4-1: S.J.Marrink et al., JPCB 108 (2004), 750.

 LJ + Coulomb (reaction field with dielectric constant of 20) + springs (bonds) + harmonic cosines (angles)

system	CG model	density, ^b g cm ⁻³	compressibility, ^c 10 ⁻⁵ bar ⁻¹	$\substack{\text{diffusion},^d\\10^{-5}\text{cm}^2\text{s}^{-1}}$
water	Р	0.99 (0.99)	6 (4.5)	2.0 (2.3)
butane	С	0.68 (0.58)	28 (> 17)	1.9 (> 5)
hexane	C-C	0.58 (0.66)	14 (17)	0.7 (4)
octane	C-C	0.77 (0.70)	14 (13)	0.6 (2)
decane	C-C-C	0.67 (0.73)	12 (11)	0.35(1)
dodecane	C-C-C	0.80 (0.75)	12 (10)	0.3 (-)
tetradecane	C-C-C-C	0.71 (0.76)	12 (9)	0.25 (-)
hexadecane	C-C-C-C	0.81 (0.77)	12 (9)	0.2 (-)
octadecane	C-C-C-C-C	0.74 (0.78)	11 (-)	0.2 (0.3)
eicosane	C-C-C-C-C	0.82 (0.79)	11 (-)	0.15 (-)

LNCC - 19.08.2014 - p. 26/75

Membrane properties

system	simulated area, ^a nm ²	experimental area,ª nm²
DPPC	0.47 ^b (283 K)	0.46 ^b (273 K), 0.48 ^c (293 K)
DPPC	0.59 (300 K)	
DPPC	0.64 (323 K)	0.64 (323 K)
DPPC	0.66 (338 K)	0.64-0.67 ^d (333 K), 0.67 (338 K)
DLPC	0.60 (300 K)	0.57 (293 K), 0.63 (303 K)
DLPC	0.66 (338 K)	0.64-0.68 ^d (333 K), 0.71 (338 K)
DSPC	0.66 (338 K)	0.65 (333 K), 0.66 (338 K)
DOPC	0.67 (300 K)	0.72 (303 K)
DPPE	0.62 (338 K)	0.61 (342 K)
DOPE	0.61 (273 K)	0.65 (271 K)
DLPE	0.55 (300 K)	0.51 (308 K)
POPE	0.59 (300 K)	0.57 (303 K)

 Refinement (water/octanol partition) and inclusion of benzene and cholesterol improper dihedrals

S.J.Marrink et al., JPCB 111 (2007), 7812.

Parameters for the CG force field

- Boltzmann factor:
 - Reverse Monte Carlo applied to radial distributions functions of atomistic simulations

T. Murtola et al., JCP 121 (2004), 9156; 126 (2007), 075101; 131 (2009),

055101; PCCP 11 (2009), 1869

Force matching of atomistic systems

S. Izvekov e G.A. Voth, JPCB **109** (2005), 2469; JCP **123** (2005), 134105; JCTC **2** (2006), 637

 Experimental properties (density, partition coeficients, membrane properties, solvation energies)

Proteins

Secondary structure

http://www.bioinf.org.uk/teaching/bbk/molstruc/practical2/peptide.html

 MARTINI proposal: beads at C_α (main chain) with different lateral groups (side chain)

L. Monticelli et al., JCTC 4 (2008), 819.

LNCC - 19.08.2014 - p. 31/75

with elastic network

http://lorentz.immstr.pasteur.fr/nma

\implies conserved secondary structure during the simulation

 UNRES proposal (H.A. Scheraga group): beads at C_α, side chains, and in the middle between the C_α's

www.unres.pl

not potential, but free energy based

LNCC - 19.08.2014 - p. 33/75

rather successful in CASP competition

1G6U (dimer): A.V. Rojas et al., JPCB 111 (2007), 293.

LNCC - 19.08.2014 - p. 34/75

DNA, RNA3SPN (three sites per nucleotide)

J.J. de Pablo, Annu. Rev. Phys. Chem. 62 (2011), 555.

LNCC - 19.08.2014 - p. 35/75

Melting curves: shape of curves and concentration effects

LNCC - 19.08.2014 - p. 36/75
MARTINI 12 base pairs (1BNA.pdb)

S. Khalid et al., J. R. Soc. Interface 5 (2008), 241.

elastic network

distances (pdb vs. 30 ns)

Density of Na⁺ around the 12 base pairs

LNCC - 19.08.2014 - p. 40/75

Sugars

Sweet MARTINI

C.A. López et al., JCTC 5 (2009), 3195.

LNCC - 19.08.2014 - p. 41/75

Amylose in nonane (atomistic vs. CG)

LNCC - 19.08.2014 - p. 42/75

Amphiphilic Molecules

SDK: Shinoda, de Vane, Klein
Parameterization against experimental data
Mapping:

W. Shinoda et al., Curr. Opin. Struct. Biol. 22 (2012), 175.

LNCC - 19.08.2014 - p. 43/75

Simulation of 5000 (vesicle) and 20000 DMPC (multilamelar vescicle) in water

W. Shinoda et al., Curr. Opin. Struct. Biol. 22 (2012), 175.

5000 DMPC with 330 C₆₀ in water after 1.7 μ s

Micellization of $C_n E_6$

B.G. Levine et al., JCTC 7 (2011), 4135

LNCC - 19.08.2014 - p. 46/75

Protein Membrane Interaction

• AMPs:

Magainin-H2 (23aa, +3) Melittin (26aa, +6)

H.L. Liu, C.M. Hsu, CPL 375 (2003), 119.

LNCC - 19.08.2014 - p. 47/75

LNCC - 19.08.2014 - p. 48/75

Magainin-H2: atomistic simulation of 4 polypeptides at a DPPC bilayer

H. Leontiadou et al., JACS 128 (2006), 12156.

disordered toroidal pore

CG self-aggregation of polypeptides with DPPC in water

L. Monticelli et al., JCTC 4 (2008), 819.

disordered toroidal pore with two magainins in the center and others at the edge of the pore

LNCC - 19.08.2014 - p. 50/75

"multiscaling" of 4 polypeptides in a DPPC bilayer

A.J. Rzepiela et al., Faraday Discuss. 144 (2010), 431.

LNCC - 19.08.2014 - p. 51/75

- different orientations and transitions of the polypeptides

- flip-flop of DPPC in the pore region
- water content within the center of the pore depends on the helicity (max. for 65% helicity; pore closes for complete α -helical polypeptides)

Melittin: recent experimental observations (POPC/DPPC)

Y. Yu et al., JACS 132 (2010), 195.

transmembrane orientation for concentrations above 1 melittin per 40 lipid molecules

CG of 24 magainins (A) and melittins (B) at a DPPC bilayer (512 molecules)

K. Santo and M.L. Berkowitz, JPCB 116 (2012), 3021.

Melittin: Pore formation only for initial configurations with melittins at both interfaces

LNCC - 19.08.2014 - p. 54/75

Pulled atomistic molecular dynamics of melittin at a POPC bilayer

S.J. Irudayam and M.L. Berkowitz, BBA 1818 (2012), 2975.

higher melittin concentrations for reorientation process

LNCC - 19.08.2014 - p. 55/75

CG of melittin at DPPC/POPG (7:3) bilayer (melittin/lipid=1/100)

K.P. Santo et al., JPCB 117 (2013), 5031.

no melittin reorientation

LNCC - 19.08.2014 - p. 56/75

melittin/lipid=1/21: transient pore

K P Santo at al IPCP 447 (2012) 5021

LNCC - 19.08.2014 - p. 57/75

continuation by atomistic simulations

K.P. Santo et al., JPCB 117 (2013), 5031.

LNCC - 19.08.2014 - p. 58/75

BAR (bin/amphiphysin/rvs)

http://www.endocytosis.org/BARdomains/BARs.html

banana shaped (concave) α -helical dimer induces/recognizes membrane curvature N-BAR domain: amphiphilic N-terminals

Atomistic simulations at DOPC/DOPS (7/3)

P.D. Blood, G.A. Voth, PNAS 103 (2006), 15068.

snapshots at 10 and 27 ns

Shape-based CG

Y. Yin et al., Structure 17 (2009), 882.

LNCC - 19.08.2014 – p. 62/75

Jumping between Scales

bottom-up and top-down

When top level guys look down they see only shit.

When bottom level guys look up they see only assholes.

LNCC - 19.08.2014 – p. 63/75

MARTINI: bottom-up

Rules: bead at the center of mass (C_{α} for proteins)

flowchart at http://www.cgmartini.nl/cgmartini/index.php/flowchartfile indicating utilities for the transformation pdb file

Proteins: sequence and secondary structure

 \implies that was easy

MARTINI: top-down (the old version)

A.J. Rzepiela et al., J. Comput. Chem. 31 (2010), 1333.

Defining randomly AA positions around the CG bead ($r_{CG} = 0.3 \text{ nm}$)

Restraining the AA to the corresponding CG bead

$$U_{restr} = \sum_{i=1}^{n} \frac{k}{2} \left(\mathbf{r}_{i}^{CG} - \mathbf{r}_{i}^{AA,com} \right)^{2}$$

Performing simulated anealing starting at high temperature (1300 K) with a small cooling rate

MARTINI: top-down (the new version)

T.A. Wassenaar et al., JCTC 10 (2014), 676.

Observation: vector cross product of $C_{\alpha,i+1}$ - $C_{\alpha,i}$ and $C_{\alpha,i+2}$ - $C_{\alpha,i}$ approximates the direction of C=O at $C_{\alpha,i}$

C=O at 1/3 of the distance from $C_{\alpha,i}$ to $C_{\alpha,i+1}$ N-H at 2/3 of this distance in opposite direction

LNCC - 19.08.2014 - p. 67/75

Example: WALP20 (helical)

LNCC - 19.08.2014 - p. 68/75

Other examples

Real Multiscaling

S.O. Nielsen et al., PCCP 12 (2010), 12401.

need for multiple time step algorithms

Adaptive Resolution

M. Praprotnik et al., JCP 123 (2005), 224106

G-protein: J. Zavadlav et al., JCP 140 (2014), 054114.

LNCC - 19.08.2014 - p. 71/75

Ultra-CG (shape-based CG) BAR domain

Y. Yin et al., Structure **17** (2009), 882.

HIV capsid protein: shape based CG

M.G. Saunders, G.A. Voth, Curr. Opin. Struct. Biol., 22 (2012), 144.

Bridging: Actin filament (muscle)

M.G. Saunders, G.A. Voth, Curr. Opin. Struct. Biol., 22 (2012), 144.

Current Opinion in Structural Biology

LNCC - 19.08.2014 - p. 74/75

Everything should be made as simple as possible, but not simpler.

Albert Einstein

