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Summary

@ Introduction
o Optimization Problems

@ Metaheuristics
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Optimization

Imagine the task of finding the highest peak in a mountain range...

under a very thick fog...
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the hight of your current position.
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Optimization

@ Your only tool is a battery operated device that can give you
the hight of your current position.

o Every time you want to know your current hight the battery
level drops a bit.

@ Mathematicians would call this a zero-th order, or
derivative-free technique.

@ This technique can handle situations where derivatives are not
defined/available/reliable.

@ Also known as “black-box" optimization.

@ Common when a computer simulation is required to evaluate
the objective function and/or constraints of the problem.
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Optimization

@ More sophisticated climbers use a battery operated device
that also provides the direction of steepest ascent at your
current position.
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Optimization

@ More sophisticated climbers use a battery operated device
that also provides the direction of steepest ascent at your
current position.

o Every time you request that information the battery level
drops a bit more.

@ Mathematicians would call this a first order, or gradient based
technique.

@ Requires differentiability of the functions involved.
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Optimization

@ Even more sophisticated climbers are available.

(<]

Namely, those that use second-order (derivative) information.

Every time you request that information the battery level
drops even more.

(]

(]

Applicable to smoother functions.
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Optimization

@ The best climber would be the one that —spending a pre-fixed
level of battery charge— reaches the highest point.

7/57



A simple formulation

Find 2* € S such that

f(@*) > f(x) VeeScCR"

In words, z* maximizes f in the admissible search set S.
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A simple formulation

Find 2* € S such that

f(@*) > f(x) VeeScCR"

In words, z* maximizes f in the admissible search set S.

o f is the objective function.

e x is the design/decision variable.
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Local and global optima

Let z* € S with norm ||z*|.
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Let z* € S with norm ||z*|.

o z* is a local minimizer of f, if and only if

Je>0: f(z") < f(x) VeeS:||z*—z|<e
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Local and global optima

-1 i i i i i i

2 22 24 26 28 3 iz i4

Figure: zg, z1, 22,23 e x4 are local optima while x; is the global
minimum.
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Standard formulation in R"
The standard formulation of a constrained optimization problem
in R™ is:

min f(x)
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Standard formulation in R"

The standard formulation of a constrained optimization problem

in R™ is:
min f(x)
subject to
9p(®) 20, p=1,2,....p
he(z) =0, ¢=1,2,...,q9
xiL<:v,<a;Z-U, 1=1,2,...,n
where

T = [xl,xg,...,a:n]T e R"

is the vector of decision/design variables.
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Constraint handling

@ Metaheuristics are usually designed for unconstrained
problems.
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Constraint handling

@ Metaheuristics are usually designed for unconstrained
problems.

@ As a result, they must be equipped with constraint handling
techniques.

@ Many options available in the literature; among them:

penalty techniques
selection techniques
special decoders
repair operators

®© 6 o o

13/57



Decision variables

Decision variables can be:
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°
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Decision variables

Decision variables can be:

e continuous: z; € R, i1=1,...,n

o integer: x; € {0,1,2,...}, i=1,...,n

o discrete: z; € C; = {cp,c1,¢2,...}, i=1,...,n

e boolean: z; € {0,1}, i=1,...,n

o functions: z; = z;(t) € Cla,b],t € [a,b], i=1,...,n
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Decision variables

But note that other parameters can be used in order to search for
more complex structures that optimize a given performance index:

networks
shapes

algebraic expressions

electrical circuits

°
°
°
o system of differential equations
°
@ chemical structures

°

“programs”

With the conveniently defined corresponding search “spaces”.

Not much math available in this case.
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Multi-objective optimization

Imagine that in a given manufacture process one wants to
simultaneously:
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Multi-objective optimization

Imagine that in a given manufacture process one wants to
simultaneously:

@ minimize material waste

@ minimize production time

The objectives above are:
e conflicting

@ non-commensurable
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Multi-objective optimization
Graphically:

Wsie

Time
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Multi-objective optimization
Graphically:

Waste
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Solution A is better w.r.t. objective 1 (faster).
Solution B is better w.r.t. objective 2 (less waste).

Which one is the best ?
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Multi-objective optimization

What about solution C ?

Fusie 4
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Multi-objective optimization

What about solution C ?

Fusie 4

-

Time

Solution C is not interesting; it is dominated by solution A.

Solution A is faster than C and has the same level of material
waste.
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Multi-objective optimization

Which would be the interesting solutions now ?

Waste 4

3

E

A O 4

O O
Do

o)

L

Time

19/57



Multi-objective optimization

Which would be the interesting solutions now ?

Waste &

The Non-dominated solutions: A, D, B & H.
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Multi-objective optimization

minimize f(x) = [f1(x), f2(x), ..., fx(x)]

subject to x = (x1,x2,...,x,) €S
where

@ k(> 2) is the number of objectives,
S is the admissible set,

f is the vector of objectives,

fi : R* = R,

°
°
°
@ X is the decision vector,
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Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.
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Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires
@ a representation for the candidate solutions

o suitable move operators to generate new candidates

and essentially involve the repetition of the steps
@ generate candidate solution

@ test candidate solution

until a stopping criterion is satisfied.
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Search algorithms

According to the amount of domain knowledge used, they can be

o weak

@ strong

Also:
@ deterministic

@ stochastic
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Search algorithms

They all face the dilemma:
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Search algorithms

They all face the dilemma:

o Exploration/Diversification.
versus

o Exploitation/Intensification.
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Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

°
°

@ a stopping criterion

@ a memory structure holding the solutions to be operated upon
°

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

(]

a procedure for the selection of candidate(s) to be operated
upon

(7]

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones
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Search Algorithms

more ingredients...

(7]

a control strategy for applying the move operators

(4]

a repair ou filter operator to deal with infeasible solutions

(]

a procedure to define a quality gradient to improve a
candidate solution

(7]

a procedure to evaluate the quality of a candidate solution

(7]

a procedure to compare the quality of 2 candidates

(4]

a history containing a list of solutions already tested.

25/57



Heuristics

e
Heuristica, uma definicdo bem geral:
“A heuristic is anything that is:
(i) helpful, useful, based on experience, and
(i) unjustified, unjustifiable, and potentially fallible.”
....your best bet !
Billy V. Koen, Professor,

The University of Texas/Austin

mar 2007 Introducéo as metaheuristicas 1
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Heuristics

Caracteristicas de uma heuristica:

m A heuristic does not guarantee a solution
m |t may contradict other heuristics
m [t reduces the search time for solving a problem

m |ts acceptance depends on the immediate context,
instead of on an absolute standard

Billy V. Koen, Professor,
The University of Texas/Austin

mar 2007 Introducéo as metaheuristicas 1
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Meta-heuristic

A master strategy that guides and modifies other heuristics to
produce solutions beyond those that are normally generated in a
quest for local optimality.

Manuel Laguna
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Some well-known metaheuristics:

The genetic algorithm

@ Simulated annealing

GRASP (greedy randomized adaptive search procedure)

@ Tabu search
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In some quarters...

“Algorithms are conceived in analytic purity in the high citadels of
academic research, heuristics are midwifed by expediency in the

dark corners of the practitioner’s lair ... and are accorded lower
status.”

Fred Glover
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o for hardware

o for software

Two ways:

@ bio-inspiration

@ bio-mimetism
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Sources of inspiration

Darwinian evolution...
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Darwinian evolution

“Nothing in Biology makes sense, except in the
light of evolution.”

Theodosius Dobzhansky

34/57



Darwinian evolution

“Nothing in Biology makes sense, except in the
light of evolution.”

Theodosius Dobzhansky

“If 1 were to give an award for the single best
idea anyone has ever had, I'd give it to Darwin,
ahead of Newton and Einsten and everyone else.”

Daniel C. Dennet
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Darwinian evolution

Biological evolution ... is change in the
properties of populations of organisms that
transcend the lifetime of a single individual. ...
individual organisms do not evolve. ... are those
that are inheritable via the genetic material from
one generation to the next.”

Douglas J. Futuyma
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Darwinian Evolution

The elements

@ variation
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Darwinian Evolution

The elements

@ variation
@ inheritance

@ selection
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The Parallel Nature-Computation

Nature Evolutionary Computation
Individual Candidate Solution
Population Set of candidate solutions

Fitness Solution quality
Genotype Solution representation

Gene A part of the solution representation
Development Decoding the representation
Crossover & Mutation Move operators
Natural selection Re-use of good (sub-)solutions
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The origins of Evolutionary Computation

Precursors:

o Turing (1948)
Barricelli (1953)
Anderson(1953)
Fraser(1957)
Friedberg(1958)
Bremermann(1962)

e 6 6 o o
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Turing

Turing's 1950 paper " Computing Machinery and Intelligence”:

“We cannot expect to find a good child-machine at
the first attempt. One must experiment with teaching
one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is
an obvious connection between this process and
evolution, by the identifications:

Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Natural selection = Judgment of the experimenter”
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The origins of Evolutionary Computation

Pioneers:

Lawrence J. Fogel
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The origins of Evolutionary Computation

Pioneers:

o el

Ingo Rechenberg & Hans-Paul Schwefel
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The origins of Evolutionary Computation

Pioneers:

i
John Holland
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The Genetic Algorithm

Basic Features:

@ employ a population of candidate solutions
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The Genetic Algorithm

Basic Features:

@ employ a population of candidate solutions

@ operates on the encoding of a candidate solution rather than
on the solution itself

@ use probabilistic transition rules

@ minimum requirements on the objective function
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The spaces involved in a genetic algorithm

Desenvolvimento Aptidao
d f
A
. f(d(x))
f(y")
T-O
Espaco de Espaco de

Gendtipos Fendtipos
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The Genetic Algorithm

Generic GA

Begin

Initialize the population

Evaluate individuals in the population

repeat
Select individuals for reproduction
Apply recombination & mutation operators
Evaluate individuals in the population
Select individuals for survival

until stop criterion satisfied

End
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The Genetic Algorithm

Main components:

o candidate solution encoding
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The Genetic Algorithm

Main components:

candidate solution encoding
population structure & size

fitness function

°
°
°
@ variation operators & their probability of application
@ selection operator

°

survival operator (population management)
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Some advantages of the GAs:

@ easy interface with existent simulators
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Some advantages of the GAs:

easy interface with existent simulators
extensibility
easy hybridization with other techniques

natural parallelism

e 6 66 o6 o

robustness

( Don't miss the next talk !!! )
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Other sources of inspiration

Ant Colony Algorithm First reference

Ant System (AS) Dorigo et al 1991
Elitist AS (EAS) Dorigo et al 1992
Ant-Q Gambardella & Dorigo 1995
Ant Colony System (ACS) Dorigo & Gambardella 1996
Max-Min AS (MMAS) Stiitzle & Hoos 1996
Rank-Based AS (ASg,,.r/RBAS) Bullnheimer et al 1997
ANTS Maniezzo 1999
Best-Worst AS (BWAS) Cordén et al 2000

Hyper-Cube AS (HCAS) Blum et a/ 2001
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Other sources of inspiration

Artificial Immune Systems

e 6 66 o6 o

(4]

Adaptive Clonal Selection (ACS)

Optimization Immune Algorithm (opt-IMMALG)
Optimized Artificial Immune Network (opt-aiNET)
Optimization Immune Algorithm (opt-IA)

Clonal Selection Algorithm (CLONALG, CLONALGI,
CLONALG2)

B-Cell Algorithm (BCA)
Cloning, Information Gain, Aging (CLIGA)
Immunological Algorithm (1A)
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Other sources of inspiration

Particle Swarm Optimization
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A Cultural algorithm

Update belief space

Accept new
knowledge from
the best individuals

Influence the genome
of the offspring and the
Generad new actions of the individuals
gendratign .

eg. movement in probelm
space

Selection of
the best
Evaluate each individuals  individuals
performance using the objective function

51/57



Pseudo-code

Cultural Algorithm

Begin

Initialize population space

Initialize belief space (domain specific knowledge, normative

value-ranges...)

while termination condition not met do
Perform actions on the individuals of the population
Evaluate each individual by using the fitness function
Select parents to produce a new generation of offspring
Update the belief space via acceptance function

end while

End
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However, Laguna noted that...

“A popular thrust of many research initiatives, and especially of
publications designed to catch the public eye, is to associate
various methods with processes found in nature.

The trend of using metaphors of nature embodies a wave of “New
Romanticism”, reminiscent of the Romanticism of the 18th and
19th centuries...

The current fascination with natural phenomena as a foundation
for problem-solving methods undoubtedly is fueled by our sense of
mystery concerning the ability of such phenomena to generate
outcomes that are still far beyond our comprehension.

53/57



And...

Metaphors of nature have a place. They appear chiefly to be useful
for spurring ideas to launch the first phases of an investigation.

As long as care is taken to prevent such metaphors from cutting
off lines of inquiry beyond their scope, they provide a means for
“dressing up” the descriptions of various meta-heuristics in a way
that appeals to our instinct to draw parallels between simple
phenomena and abstract designs.

It is up to prudence to determine when the symbolism of the New
Romanticism obscures rather than illuminates the pathway to
improved understanding.

54/57



Concluding that...

Within the realm of meta-heuristic design, there is a great deal we
have yet to learn.

The issue of whether the analogies that underlie some of our
models may limit or enhance our access to further discovery
deserves careful reflection.”

Manuel Laguna
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Conclusions

Metaheuristics have a wide range of applications:
@ Complex optimization problems,
o Structural (as well as parametric) identification problems,

@ Design applications

(4]

They do not require much domain knowledge.

(]

But many function evaluations (computer simulations) are
usually required.

(]

Surrogate models (metamodels) can be used,

(]

Hybridization with available techniques is simple,

(]

Natural parallelization.
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Thank you for your attention.

hcbm@lncc.br
http://www.lncc.br/~hcbm
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