
Nature Inspired Metaheuristics for
Optimization

Helio J.C. Barbosa

Laboratório Nacional de Computação Cient́ıfica - LNCC/MCTIC

Universidade Federal de Juiz de Fora

1/57

Summary

Introduction

Optimization Problems

Metaheuristics

2/57

Optimization

Imagine the task of finding the highest peak in a mountain range...

under a very thick fog...

3/57

Optimization

Your only tool is a battery operated device that can give you
the hight of your current position.

Every time you want to know your current hight the battery
level drops a bit.

Mathematicians would call this a zero-th order, or
derivative-free technique.

This technique can handle situations where derivatives are not
defined/available/reliable.

Also known as “black-box” optimization.

Common when a computer simulation is required to evaluate
the objective function and/or constraints of the problem.

4/57

Optimization

Your only tool is a battery operated device that can give you
the hight of your current position.

Every time you want to know your current hight the battery
level drops a bit.

Mathematicians would call this a zero-th order, or
derivative-free technique.

This technique can handle situations where derivatives are not
defined/available/reliable.

Also known as “black-box” optimization.

Common when a computer simulation is required to evaluate
the objective function and/or constraints of the problem.

4/57

Optimization

Your only tool is a battery operated device that can give you
the hight of your current position.

Every time you want to know your current hight the battery
level drops a bit.

Mathematicians would call this a zero-th order, or
derivative-free technique.

This technique can handle situations where derivatives are not
defined/available/reliable.

Also known as “black-box” optimization.

Common when a computer simulation is required to evaluate
the objective function and/or constraints of the problem.

4/57

Optimization

Your only tool is a battery operated device that can give you
the hight of your current position.

Every time you want to know your current hight the battery
level drops a bit.

Mathematicians would call this a zero-th order, or
derivative-free technique.

This technique can handle situations where derivatives are not
defined/available/reliable.

Also known as “black-box” optimization.

Common when a computer simulation is required to evaluate
the objective function and/or constraints of the problem.

4/57

Optimization

Your only tool is a battery operated device that can give you
the hight of your current position.

Every time you want to know your current hight the battery
level drops a bit.

Mathematicians would call this a zero-th order, or
derivative-free technique.

This technique can handle situations where derivatives are not
defined/available/reliable.

Also known as “black-box” optimization.

Common when a computer simulation is required to evaluate
the objective function and/or constraints of the problem.

4/57

Optimization

Your only tool is a battery operated device that can give you
the hight of your current position.

Every time you want to know your current hight the battery
level drops a bit.

Mathematicians would call this a zero-th order, or
derivative-free technique.

This technique can handle situations where derivatives are not
defined/available/reliable.

Also known as “black-box” optimization.

Common when a computer simulation is required to evaluate
the objective function and/or constraints of the problem.

4/57

Optimization

More sophisticated climbers use a battery operated device
that also provides the direction of steepest ascent at your
current position.

Every time you request that information the battery level
drops a bit more.

Mathematicians would call this a first order, or gradient based
technique.

Requires differentiability of the functions involved.

5/57

Optimization

More sophisticated climbers use a battery operated device
that also provides the direction of steepest ascent at your
current position.

Every time you request that information the battery level
drops a bit more.

Mathematicians would call this a first order, or gradient based
technique.

Requires differentiability of the functions involved.

5/57

Optimization

More sophisticated climbers use a battery operated device
that also provides the direction of steepest ascent at your
current position.

Every time you request that information the battery level
drops a bit more.

Mathematicians would call this a first order, or gradient based
technique.

Requires differentiability of the functions involved.

5/57

Optimization

More sophisticated climbers use a battery operated device
that also provides the direction of steepest ascent at your
current position.

Every time you request that information the battery level
drops a bit more.

Mathematicians would call this a first order, or gradient based
technique.

Requires differentiability of the functions involved.

5/57

Optimization

Even more sophisticated climbers are available.

Namely, those that use second-order (derivative) information.

Every time you request that information the battery level
drops even more.

Applicable to smoother functions.

6/57

Optimization

Even more sophisticated climbers are available.

Namely, those that use second-order (derivative) information.

Every time you request that information the battery level
drops even more.

Applicable to smoother functions.

6/57

Optimization

Even more sophisticated climbers are available.

Namely, those that use second-order (derivative) information.

Every time you request that information the battery level
drops even more.

Applicable to smoother functions.

6/57

Optimization

Even more sophisticated climbers are available.

Namely, those that use second-order (derivative) information.

Every time you request that information the battery level
drops even more.

Applicable to smoother functions.

6/57

Optimization

The best climber would be the one that –spending a pre-fixed
level of battery charge– reaches the highest point.

7/57

A simple formulation

Find x∗ ∈ S such that

f(x∗) > f(x) ∀x ∈ S ⊂ Rn

In words, x∗ maximizes f in the admissible search set S.

f is the objective function.

x is the design/decision variable.

8/57

A simple formulation

Find x∗ ∈ S such that

f(x∗) > f(x) ∀x ∈ S ⊂ Rn

In words, x∗ maximizes f in the admissible search set S.

f is the objective function.

x is the design/decision variable.

8/57

A simple formulation

Find x∗ ∈ S such that

f(x∗) > f(x) ∀x ∈ S ⊂ Rn

In words, x∗ maximizes f in the admissible search set S.

f is the objective function.

x is the design/decision variable.

8/57

Local and global optima

Let x∗ ∈ S with norm ‖x∗‖.

x∗ is a local minimizer of f , if and only if

∃ε > 0 : f(x∗) ≤ f(x) ∀x ∈ S : ‖x∗ − x‖ < ε

x∗ is a global minimizer of f , if and only if

f(x∗) ≤ f(x) ∀x ∈ S

9/57

Local and global optima

Let x∗ ∈ S with norm ‖x∗‖.

x∗ is a local minimizer of f , if and only if

∃ε > 0 : f(x∗) ≤ f(x) ∀x ∈ S : ‖x∗ − x‖ < ε

x∗ is a global minimizer of f , if and only if

f(x∗) ≤ f(x) ∀x ∈ S

9/57

Local and global optima

Let x∗ ∈ S with norm ‖x∗‖.

x∗ is a local minimizer of f , if and only if

∃ε > 0 : f(x∗) ≤ f(x) ∀x ∈ S : ‖x∗ − x‖ < ε

x∗ is a global minimizer of f , if and only if

f(x∗) ≤ f(x) ∀x ∈ S

9/57

Local and global optima

Figure: x0, x1, x2, x3 e x4 are local optima while x1 is the global
minimum.

10/57

Standard formulation in Rn

The standard formulation of a constrained optimization problem
in Rn is:

min f(x)

subject to
gp(x) ≥ 0, p = 1, 2, . . . , p̄

hq(x) = 0, q = 1, 2, . . . , q̄

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n

where
x = [x1, x2, . . . , xn]T ∈ Rn

is the vector of decision/design variables.

11/57

Standard formulation in Rn

The standard formulation of a constrained optimization problem
in Rn is:

min f(x)

subject to
gp(x) ≥ 0, p = 1, 2, . . . , p̄

hq(x) = 0, q = 1, 2, . . . , q̄

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n

where
x = [x1, x2, . . . , xn]T ∈ Rn

is the vector of decision/design variables.

11/57

Standard formulation in Rn

The standard formulation of a constrained optimization problem
in Rn is:

min f(x)

subject to
gp(x) ≥ 0, p = 1, 2, . . . , p̄

hq(x) = 0, q = 1, 2, . . . , q̄

xLi ≤ xi ≤ xUi , i = 1, 2, . . . , n

where
x = [x1, x2, . . . , xn]T ∈ Rn

is the vector of decision/design variables.

11/57

Feasible Region

12/57

Constraint handling

Metaheuristics are usually designed for unconstrained
problems.

As a result, they must be equipped with constraint handling
techniques.

Many options available in the literature; among them:

penalty techniques
selection techniques
special decoders
repair operators

13/57

Constraint handling

Metaheuristics are usually designed for unconstrained
problems.

As a result, they must be equipped with constraint handling
techniques.

Many options available in the literature; among them:

penalty techniques
selection techniques
special decoders
repair operators

13/57

Constraint handling

Metaheuristics are usually designed for unconstrained
problems.

As a result, they must be equipped with constraint handling
techniques.

Many options available in the literature; among them:

penalty techniques
selection techniques
special decoders
repair operators

13/57

Decision variables

Decision variables can be:

continuous: xi ∈ R, i = 1, . . . , n

integer: xi ∈ {0, 1, 2, . . .}, i = 1, . . . , n

discrete: xi ∈ Ci = {c0, c1, c2, . . .}, i = 1, . . . , n

boolean: xi ∈ {0, 1}, i = 1, . . . , n

functions: xi = xi(t) ∈ C[a, b], t ∈ [a, b], i = 1, . . . , n

14/57

Decision variables

Decision variables can be:

continuous: xi ∈ R, i = 1, . . . , n

integer: xi ∈ {0, 1, 2, . . .}, i = 1, . . . , n

discrete: xi ∈ Ci = {c0, c1, c2, . . .}, i = 1, . . . , n

boolean: xi ∈ {0, 1}, i = 1, . . . , n

functions: xi = xi(t) ∈ C[a, b], t ∈ [a, b], i = 1, . . . , n

14/57

Decision variables

Decision variables can be:

continuous: xi ∈ R, i = 1, . . . , n

integer: xi ∈ {0, 1, 2, . . .}, i = 1, . . . , n

discrete: xi ∈ Ci = {c0, c1, c2, . . .}, i = 1, . . . , n

boolean: xi ∈ {0, 1}, i = 1, . . . , n

functions: xi = xi(t) ∈ C[a, b], t ∈ [a, b], i = 1, . . . , n

14/57

Decision variables

Decision variables can be:

continuous: xi ∈ R, i = 1, . . . , n

integer: xi ∈ {0, 1, 2, . . .}, i = 1, . . . , n

discrete: xi ∈ Ci = {c0, c1, c2, . . .}, i = 1, . . . , n

boolean: xi ∈ {0, 1}, i = 1, . . . , n

functions: xi = xi(t) ∈ C[a, b], t ∈ [a, b], i = 1, . . . , n

14/57

Decision variables

Decision variables can be:

continuous: xi ∈ R, i = 1, . . . , n

integer: xi ∈ {0, 1, 2, . . .}, i = 1, . . . , n

discrete: xi ∈ Ci = {c0, c1, c2, . . .}, i = 1, . . . , n

boolean: xi ∈ {0, 1}, i = 1, . . . , n

functions: xi = xi(t) ∈ C[a, b], t ∈ [a, b], i = 1, . . . , n

14/57

Decision variables

Decision variables can be:

continuous: xi ∈ R, i = 1, . . . , n

integer: xi ∈ {0, 1, 2, . . .}, i = 1, . . . , n

discrete: xi ∈ Ci = {c0, c1, c2, . . .}, i = 1, . . . , n

boolean: xi ∈ {0, 1}, i = 1, . . . , n

functions: xi = xi(t) ∈ C[a, b], t ∈ [a, b], i = 1, . . . , n

14/57

Decision variables

But note that other parameters can be used in order to search for
more complex structures that optimize a given performance index:

networks

shapes

algebraic expressions

system of differential equations

electrical circuits

chemical structures

“programs”

With the conveniently defined corresponding search “spaces”.

Not much math available in this case.

15/57

Multi-objective optimization

Imagine that in a given manufacture process one wants to
simultaneously:

1 minimize material waste

2 minimize production time

The objectives above are:

conflicting

non-commensurable

16/57

Multi-objective optimization

Imagine that in a given manufacture process one wants to
simultaneously:

1 minimize material waste

2 minimize production time

The objectives above are:

conflicting

non-commensurable

16/57

Multi-objective optimization

Imagine that in a given manufacture process one wants to
simultaneously:

1 minimize material waste

2 minimize production time

The objectives above are:

conflicting

non-commensurable

16/57

Multi-objective optimization

Imagine that in a given manufacture process one wants to
simultaneously:

1 minimize material waste

2 minimize production time

The objectives above are:

conflicting

non-commensurable

16/57

Multi-objective optimization

Imagine that in a given manufacture process one wants to
simultaneously:

1 minimize material waste

2 minimize production time

The objectives above are:

conflicting

non-commensurable

16/57

Multi-objective optimization

Imagine that in a given manufacture process one wants to
simultaneously:

1 minimize material waste

2 minimize production time

The objectives above are:

conflicting

non-commensurable

16/57

Multi-objective optimization

Graphically:

Solution A is better w.r.t. objective 1 (faster).

Solution B is better w.r.t. objective 2 (less waste).

Which one is the best ?

17/57

Multi-objective optimization

Graphically:

Solution A is better w.r.t. objective 1 (faster).

Solution B is better w.r.t. objective 2 (less waste).

Which one is the best ?

17/57

Multi-objective optimization

Graphically:

Solution A is better w.r.t. objective 1 (faster).

Solution B is better w.r.t. objective 2 (less waste).

Which one is the best ?

17/57

Multi-objective optimization

Graphically:

Solution A is better w.r.t. objective 1 (faster).

Solution B is better w.r.t. objective 2 (less waste).

Which one is the best ?

17/57

Multi-objective optimization

What about solution C ?

Solution C is not interesting; it is dominated by solution A.

Solution A is faster than C and has the same level of material
waste.

18/57

Multi-objective optimization

What about solution C ?

Solution C is not interesting; it is dominated by solution A.

Solution A is faster than C and has the same level of material
waste.

18/57

Multi-objective optimization

What about solution C ?

Solution C is not interesting; it is dominated by solution A.

Solution A is faster than C and has the same level of material
waste.

18/57

Multi-objective optimization

Which would be the interesting solutions now ?

The Non-dominated solutions: A, D, B & H.

19/57

Multi-objective optimization

Which would be the interesting solutions now ?

The Non-dominated solutions: A, D, B & H.

19/57

Multi-objective optimization

minimize f(x) = [f1(x), f2(x), ..., fk(x)]
subject to x = (x1, x2, ..., xn) ∈ S

where

k(≥ 2) is the number of objectives,

S is the admissible set,

f is the vector of objectives,

fi : Rn → R,

x is the decision vector,

20/57

Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires

a representation for the candidate solutions

suitable move operators to generate new candidates

and essentially involve the repetition of the steps

generate candidate solution

test candidate solution

until a stopping criterion is satisfied.

21/57

Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires

a representation for the candidate solutions

suitable move operators to generate new candidates

and essentially involve the repetition of the steps

generate candidate solution

test candidate solution

until a stopping criterion is satisfied.

21/57

Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires

a representation for the candidate solutions

suitable move operators to generate new candidates

and essentially involve the repetition of the steps

generate candidate solution

test candidate solution

until a stopping criterion is satisfied.

21/57

Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires

a representation for the candidate solutions

suitable move operators to generate new candidates

and essentially involve the repetition of the steps

generate candidate solution

test candidate solution

until a stopping criterion is satisfied.

21/57

Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires

a representation for the candidate solutions

suitable move operators to generate new candidates

and essentially involve the repetition of the steps

generate candidate solution

test candidate solution

until a stopping criterion is satisfied.

21/57

Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires

a representation for the candidate solutions

suitable move operators to generate new candidates

and essentially involve the repetition of the steps

generate candidate solution

test candidate solution

until a stopping criterion is satisfied.

21/57

Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires

a representation for the candidate solutions

suitable move operators to generate new candidates

and essentially involve the repetition of the steps

generate candidate solution

test candidate solution

until a stopping criterion is satisfied.

21/57

Search algorithms

Depend strongly on the set where the search is carried out, and
additional constraints imposed on the candidate solutions.

Any search algorithm requires

a representation for the candidate solutions

suitable move operators to generate new candidates

and essentially involve the repetition of the steps

generate candidate solution

test candidate solution

until a stopping criterion is satisfied.

21/57

Search algorithms

According to the amount of domain knowledge used, they can be

weak

strong

Also:

deterministic

stochastic

22/57

Search algorithms

They all face the dilemma:

Exploration/Diversification.
versus

Exploitation/Intensification.

23/57

Search algorithms

They all face the dilemma:

Exploration/Diversification.
versus

Exploitation/Intensification.

23/57

Search algorithms

They all face the dilemma:

Exploration/Diversification.
versus

Exploitation/Intensification.

23/57

Search algorithms

They all face the dilemma:

Exploration/Diversification.
versus

Exploitation/Intensification.

23/57

Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

a stopping criterion

a memory structure holding the solutions to be operated upon

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

a procedure for the selection of candidate(s) to be operated
upon

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones

24/57

Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

a stopping criterion

a memory structure holding the solutions to be operated upon

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

a procedure for the selection of candidate(s) to be operated
upon

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones

24/57

Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

a stopping criterion

a memory structure holding the solutions to be operated upon

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

a procedure for the selection of candidate(s) to be operated
upon

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones

24/57

Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

a stopping criterion

a memory structure holding the solutions to be operated upon

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

a procedure for the selection of candidate(s) to be operated
upon

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones

24/57

Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

a stopping criterion

a memory structure holding the solutions to be operated upon

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

a procedure for the selection of candidate(s) to be operated
upon

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones

24/57

Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

a stopping criterion

a memory structure holding the solutions to be operated upon

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

a procedure for the selection of candidate(s) to be operated
upon

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones

24/57

Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

a stopping criterion

a memory structure holding the solutions to be operated upon

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

a procedure for the selection of candidate(s) to be operated
upon

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones

24/57

Search Algorithms

Poli & Logan identify possible components of a search algorithm:

a representation for the candidate solutions

an initialization procedure

a stopping criterion

a memory structure holding the solutions to be operated upon

a procedure for memory management to control
inclusion/removal of candidate solutions in/from the memory

a procedure for the selection of candidate(s) to be operated
upon

a set of move operators to be applied to one or more
candidate solutions in order to generate new ones

24/57

Search Algorithms

more ingredients...

a control strategy for applying the move operators

a repair ou filter operator to deal with infeasible solutions

a procedure to define a quality gradient to improve a
candidate solution

a procedure to evaluate the quality of a candidate solution

a procedure to compare the quality of 2 candidates

a history containing a list of solutions already tested.

25/57

Search Algorithms

more ingredients...

a control strategy for applying the move operators

a repair ou filter operator to deal with infeasible solutions

a procedure to define a quality gradient to improve a
candidate solution

a procedure to evaluate the quality of a candidate solution

a procedure to compare the quality of 2 candidates

a history containing a list of solutions already tested.

25/57

Search Algorithms

more ingredients...

a control strategy for applying the move operators

a repair ou filter operator to deal with infeasible solutions

a procedure to define a quality gradient to improve a
candidate solution

a procedure to evaluate the quality of a candidate solution

a procedure to compare the quality of 2 candidates

a history containing a list of solutions already tested.

25/57

Search Algorithms

more ingredients...

a control strategy for applying the move operators

a repair ou filter operator to deal with infeasible solutions

a procedure to define a quality gradient to improve a
candidate solution

a procedure to evaluate the quality of a candidate solution

a procedure to compare the quality of 2 candidates

a history containing a list of solutions already tested.

25/57

Search Algorithms

more ingredients...

a control strategy for applying the move operators

a repair ou filter operator to deal with infeasible solutions

a procedure to define a quality gradient to improve a
candidate solution

a procedure to evaluate the quality of a candidate solution

a procedure to compare the quality of 2 candidates

a history containing a list of solutions already tested.

25/57

Search Algorithms

more ingredients...

a control strategy for applying the move operators

a repair ou filter operator to deal with infeasible solutions

a procedure to define a quality gradient to improve a
candidate solution

a procedure to evaluate the quality of a candidate solution

a procedure to compare the quality of 2 candidates

a history containing a list of solutions already tested.

25/57

Search Algorithms

more ingredients...

a control strategy for applying the move operators

a repair ou filter operator to deal with infeasible solutions

a procedure to define a quality gradient to improve a
candidate solution

a procedure to evaluate the quality of a candidate solution

a procedure to compare the quality of 2 candidates

a history containing a list of solutions already tested.

25/57

Heuristics

Heurística, uma definição bem geral:

“A heuristic is anything that is:

(i) helpful, useful, based on experience, and

(ii) unjustified, unjustifiable, and potentially fallible.”

Introdução às metaheurísticas 1mar 2007

....your best bet !

Billy V. Koen, Professor,
The University of Texas/Austin

26/57

Heuristics

Características de uma heurística:

� A heuristic does not guarantee a solution
� It may contradict other heuristics
� It reduces the search time for solving a problem
� Its acceptance depends on the immediate context,

Introdução às metaheurísticas 1mar 2007

� Its acceptance depends on the immediate context,
instead of on an absolute standard

Billy V. Koen, Professor,
The University of Texas/Austin

27/57

Meta-heuristic

A master strategy that guides and modifies other heuristics to
produce solutions beyond those that are normally generated in a
quest for local optimality.

Manuel Laguna

28/57

Some well-known metaheuristics:

The genetic algorithm

Simulated annealing

GRASP (greedy randomized adaptive search procedure)

Tabu search

29/57

In some quarters...

“Algorithms are conceived in analytic purity in the high citadels of
academic research, heuristics are midwifed by expediency in the
dark corners of the practitioner’s lair ... and are accorded lower
status.”

Fred Glover

30/57

Nature as source of inspiration

for hardware

for software

Two ways:

bio-inspiration

bio-mimetism

31/57

Nature as source of inspiration

for hardware

for software

Two ways:

bio-inspiration

bio-mimetism

31/57

Nature as source of inspiration

for hardware

for software

Two ways:

bio-inspiration

bio-mimetism

31/57

Nature as source of inspiration

for hardware

for software

Two ways:

bio-inspiration

bio-mimetism

31/57

Nature as source of inspiration

for hardware

for software

Two ways:

bio-inspiration

bio-mimetism

31/57

Nature as source of inspiration

for hardware

for software

Two ways:

bio-inspiration

bio-mimetism

31/57

Sources of inspiration

Biology: artificial neural networks

Physics: simulated annealing technique

32/57

Sources of inspiration

Biology: artificial neural networks

Physics: simulated annealing technique

32/57

Sources of inspiration

Biology: artificial neural networks

Physics: simulated annealing technique

32/57

Sources of inspiration

Darwinian evolution...

33/57

Darwinian evolution

“Nothing in Biology makes sense, except in the
light of evolution.”

Theodosius Dobzhansky

“If I were to give an award for the single best
idea anyone has ever had, I’d give it to Darwin,
ahead of Newton and Einsten and everyone else.”

Daniel C. Dennet

34/57

Darwinian evolution

“Nothing in Biology makes sense, except in the
light of evolution.”

Theodosius Dobzhansky

“If I were to give an award for the single best
idea anyone has ever had, I’d give it to Darwin,
ahead of Newton and Einsten and everyone else.”

Daniel C. Dennet

34/57

Darwinian evolution

Biological evolution ... is change in the
properties of populations of organisms that
transcend the lifetime of a single individual. ...
individual organisms do not evolve. ... are those
that are inheritable via the genetic material from
one generation to the next.”

Douglas J. Futuyma

35/57

Darwinian Evolution

The elements

variation

inheritance

selection

36/57

Darwinian Evolution

The elements

variation

inheritance

selection

36/57

Darwinian Evolution

The elements

variation

inheritance

selection

36/57

The Parallel Nature-Computation

Nature Evolutionary Computation

Individual Candidate Solution
Population Set of candidate solutions

Fitness Solution quality
Genotype Solution representation

Gene A part of the solution representation
Development Decoding the representation

Crossover & Mutation Move operators
Natural selection Re-use of good (sub-)solutions

37/57

The origins of Evolutionary Computation

Precursors:

Turing (1948)

Barricelli (1953)

Anderson(1953)

Fraser(1957)

Friedberg(1958)

Bremermann(1962)

38/57

Turing

Turing’s 1950 paper ”Computing Machinery and Intelligence”:

“We cannot expect to find a good child-machine at
the first attempt. One must experiment with teaching
one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is
an obvious connection between this process and
evolution, by the identifications:

Structure of the child machine = Hereditary material
Changes of the child machine = Mutations
Natural selection = Judgment of the experimenter”

39/57

The origins of Evolutionary Computation

Pioneers:

Lawrence J. Fogel

40/57

The origins of Evolutionary Computation

Pioneers:

Ingo Rechenberg & Hans-Paul Schwefel

41/57

The origins of Evolutionary Computation

Pioneers:

John Holland

42/57

The Genetic Algorithm

Basic Features:

employ a population of candidate solutions

operates on the encoding of a candidate solution rather than
on the solution itself

use probabilistic transition rules

minimum requirements on the objective function

43/57

The Genetic Algorithm

Basic Features:

employ a population of candidate solutions

operates on the encoding of a candidate solution rather than
on the solution itself

use probabilistic transition rules

minimum requirements on the objective function

43/57

The Genetic Algorithm

Basic Features:

employ a population of candidate solutions

operates on the encoding of a candidate solution rather than
on the solution itself

use probabilistic transition rules

minimum requirements on the objective function

43/57

The Genetic Algorithm

Basic Features:

employ a population of candidate solutions

operates on the encoding of a candidate solution rather than
on the solution itself

use probabilistic transition rules

minimum requirements on the objective function

43/57

The spaces involved in a genetic algorithm

x

y=d(x)

x' y'

f(d(x))

f(y')

Espaço de
Genótipos

Espaço de
Fenótipos

0

d f

Desenvolvimento Aptidão

44/57

The Genetic Algorithm

Generic GA
Begin
Initialize the population
Evaluate individuals in the population
repeat

Select individuals for reproduction
Apply recombination & mutation operators
Evaluate individuals in the population
Select individuals for survival

until stop criterion satisfied
End

45/57

The Genetic Algorithm

Main components:

candidate solution encoding

population structure & size

fitness function

variation operators & their probability of application

selection operator

survival operator (population management)

46/57

The Genetic Algorithm

Main components:

candidate solution encoding

population structure & size

fitness function

variation operators & their probability of application

selection operator

survival operator (population management)

46/57

The Genetic Algorithm

Main components:

candidate solution encoding

population structure & size

fitness function

variation operators & their probability of application

selection operator

survival operator (population management)

46/57

The Genetic Algorithm

Main components:

candidate solution encoding

population structure & size

fitness function

variation operators & their probability of application

selection operator

survival operator (population management)

46/57

The Genetic Algorithm

Main components:

candidate solution encoding

population structure & size

fitness function

variation operators & their probability of application

selection operator

survival operator (population management)

46/57

The Genetic Algorithm

Main components:

candidate solution encoding

population structure & size

fitness function

variation operators & their probability of application

selection operator

survival operator (population management)

46/57

Some advantages of the GAs:

easy interface with existent simulators

extensibility

easy hybridization with other techniques

natural parallelism

robustness

(Don’t miss the next talk !!!)

47/57

Some advantages of the GAs:

easy interface with existent simulators

extensibility

easy hybridization with other techniques

natural parallelism

robustness

(Don’t miss the next talk !!!)

47/57

Some advantages of the GAs:

easy interface with existent simulators

extensibility

easy hybridization with other techniques

natural parallelism

robustness

(Don’t miss the next talk !!!)

47/57

Some advantages of the GAs:

easy interface with existent simulators

extensibility

easy hybridization with other techniques

natural parallelism

robustness

(Don’t miss the next talk !!!)

47/57

Some advantages of the GAs:

easy interface with existent simulators

extensibility

easy hybridization with other techniques

natural parallelism

robustness

(Don’t miss the next talk !!!)

47/57

Other sources of inspiration

Ant Colony Algorithm First reference
Ant System (AS) Dorigo et al 1991
Elitist AS (EAS) Dorigo et al 1992
Ant-Q Gambardella & Dorigo 1995
Ant Colony System (ACS) Dorigo & Gambardella 1996
Max-Min AS (MMAS) Stützle & Hoos 1996
Rank-Based AS (ASRank/RBAS) Bullnheimer et al 1997
ANTS Maniezzo 1999
Best-Worst AS (BWAS) Cordón et al 2000
Hyper-Cube AS (HCAS) Blum et al 2001
· ·
· ·
· ·

48/57

Other sources of inspiration

Artificial Immune Systems

Adaptive Clonal Selection (ACS)

Optimization Immune Algorithm (opt-IMMALG)

Optimized Artificial Immune Network (opt-aiNET)

Optimization Immune Algorithm (opt-IA)

Clonal Selection Algorithm (CLONALG, CLONALG1,
CLONALG2)

B-Cell Algorithm (BCA)

Cloning, Information Gain, Aging (CLIGA)

Immunological Algorithm (IA)

49/57

Other sources of inspiration

Particle Swarm Optimization

50/57

A Cultural algorithm

51/57

Pseudo-code

Cultural Algorithm
Begin
Initialize population space
Initialize belief space (domain specific knowledge, normative
value-ranges...)
while termination condition not met do

Perform actions on the individuals of the population
Evaluate each individual by using the fitness function
Select parents to produce a new generation of offspring
Update the belief space via acceptance function

end while
End

52/57

However, Laguna noted that...

“A popular thrust of many research initiatives, and especially of
publications designed to catch the public eye, is to associate
various methods with processes found in nature.

The trend of using metaphors of nature embodies a wave of “New
Romanticism”, reminiscent of the Romanticism of the 18th and
19th centuries...

The current fascination with natural phenomena as a foundation
for problem-solving methods undoubtedly is fueled by our sense of
mystery concerning the ability of such phenomena to generate
outcomes that are still far beyond our comprehension.

53/57

And...

Metaphors of nature have a place. They appear chiefly to be useful
for spurring ideas to launch the first phases of an investigation.

As long as care is taken to prevent such metaphors from cutting
off lines of inquiry beyond their scope, they provide a means for
“dressing up” the descriptions of various meta-heuristics in a way
that appeals to our instinct to draw parallels between simple
phenomena and abstract designs.

It is up to prudence to determine when the symbolism of the New
Romanticism obscures rather than illuminates the pathway to
improved understanding.

54/57

Concluding that...

Within the realm of meta-heuristic design, there is a great deal we
have yet to learn.

The issue of whether the analogies that underlie some of our
models may limit or enhance our access to further discovery
deserves careful reflection.”

Manuel Laguna

55/57

Conclusions

Metaheuristics have a wide range of applications:

Complex optimization problems,

Structural (as well as parametric) identification problems,

Design applications

They do not require much domain knowledge.

But many function evaluations (computer simulations) are
usually required.

Surrogate models (metamodels) can be used,

Hybridization with available techniques is simple,

Natural parallelization.

56/57

Conclusions

Metaheuristics have a wide range of applications:

Complex optimization problems,

Structural (as well as parametric) identification problems,

Design applications

They do not require much domain knowledge.

But many function evaluations (computer simulations) are
usually required.

Surrogate models (metamodels) can be used,

Hybridization with available techniques is simple,

Natural parallelization.

56/57

Conclusions

Metaheuristics have a wide range of applications:

Complex optimization problems,

Structural (as well as parametric) identification problems,

Design applications

They do not require much domain knowledge.

But many function evaluations (computer simulations) are
usually required.

Surrogate models (metamodels) can be used,

Hybridization with available techniques is simple,

Natural parallelization.

56/57

Conclusions

Metaheuristics have a wide range of applications:

Complex optimization problems,

Structural (as well as parametric) identification problems,

Design applications

They do not require much domain knowledge.

But many function evaluations (computer simulations) are
usually required.

Surrogate models (metamodels) can be used,

Hybridization with available techniques is simple,

Natural parallelization.

56/57

Thank you for your attention.

hcbm@lncc.br

http://www.lncc.br/~hcbm

57/57

hcbm@lncc.br
http://www.lncc.br/~hcbm

